MT3608

2A, High Efficiency

1.2MHz Current Mode Step-Up Converter

FEATURES

- Integrated 80mΩ Power MOSFET
- 2V to 24V Input Voltage
- 1.2MHz Fixed Switching Frequency
- Internal 4A Switch Current Limit
- Adjustable Output Voltage
- Internal Compensation
- Up to 28V Output Voltage
- Automatic Pulse Frequency Modulation Mode at Light Loads
- up to 93% Efficiency
- Available in a 6-Pin SOT23-6 Package

APPLICATIONS

- Battery-Powered Equipment
- Set-Top Boxed
- LCD Bias Supply
- DSL and Cable Modems and Routers
- Networking cards powered from PCI or PCI express slots

GENERAL DESCRIPTION

The MT3608 is a constant frequency, 6-pin SOT23 current mode step-up converter intended for small, low power applications. The MT3608 switches at 1.2MHz and allows the use of tiny, low cost capacitors and inductors 2mm or less in height. Internal soft-start results in small inrush current and extends battery life.

The MT3608 features automatic shifting to pulse frequency modulation mode at light loads. The MT3608 includes under-voltage lockout, current limiting, and thermal overload protection to prevent damage in the event of an output overload. The MT3608 is available in a small 6-pin SOT-23 package.

TYPICAL APPLICATION

![Basic Application Circuit](image)

Figure 1. Basic Application Circuit

![Efficiency vs Load Current](image)

V_{out} = 5V

V_{in} = 3V

V_{in} = 3.7V

V_{in} = 4.2V

MT3608 Rev1.0

www.aerosemi.com

Aerosemi Proprietary Information. Unauthorized Photocopy and Duplication Prohibited.

All Rights Reserved.
ABSOLUTE MAXIMUM RATINGS (Note 1)

VIN,EN voltages-0.3V to 26V
FB Voltages-0.3V to 6V
SW Voltage-0.3V to 30V
Power Dissipation0.6W
Thermal Resistance θ_{JC}130°C/W
Thermal Resistance θ_{JA}250°C/W

Junction Temperature(Note2)160°C
Operating Temperature Range-40°C to 85°C
Lead Temperature(Soldering,10s)300°C
Storage Temperature Range-65°C to 150°C
ESD HBM(Human Body Mode)2kV
ESD MM(Machine Mode)200V

PACKAGE/ORDER INFORMATION

<table>
<thead>
<tr>
<th>Order Part Number</th>
<th>Package</th>
<th>Top Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT3608</td>
<td>SOT23-6</td>
<td>B628DC</td>
</tr>
</tbody>
</table>

PIN DESCRIPTION

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>Pin Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW</td>
<td>1</td>
<td>Power Switch Output. SW is the drain of the internal MOSFET switch. Connect the power inductor and output rectifier to SW. SW can swing between GND and 28V.</td>
</tr>
<tr>
<td>GND</td>
<td>2</td>
<td>Ground Pin</td>
</tr>
<tr>
<td>FB</td>
<td>3</td>
<td>Feedback Input. The FB voltage is 0.6V. Connect a resistor divider to FB.</td>
</tr>
<tr>
<td>EN</td>
<td>4</td>
<td>Regulator On/Off Control Input. A high input at EN turns on the converter, and a low input turns it off. When not used, connect EN to the input supply for automatic startup.</td>
</tr>
<tr>
<td>VIN</td>
<td>5</td>
<td>Input Supply Pin. Must be locally bypassed.</td>
</tr>
<tr>
<td>NC</td>
<td>6</td>
<td>No Connect</td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS (Note 3)

(\(V_{IN} = V_{EN} = 5V, T_A = 25^\circ C\), unless otherwise noted.)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Input Voltage</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Under Voltage Lockout</td>
<td></td>
<td></td>
<td>1.98</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Under Voltage Lockout Hysteresis</td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>Current (Shutdown) V<sub>EN</sub> = 0V</td>
<td></td>
<td>0.1</td>
<td>1</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>Quiescent Current (PFM) V<sub>FB</sub> = 0.7V, No switch</td>
<td></td>
<td>100</td>
<td>200</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>Quiescent Current (PWM) V<sub>FB</sub> = 0.5V, switch</td>
<td></td>
<td>1.6</td>
<td>2.2</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Switching Frequency</td>
<td></td>
<td></td>
<td>1.2</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>Maximum Duty Cycle V<sub>FB</sub> = 0V</td>
<td></td>
<td>90</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>EN Input High Voltage</td>
<td></td>
<td>1.5</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>EN Input Low Voltage</td>
<td></td>
<td></td>
<td>0.4</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>FB Voltage</td>
<td></td>
<td>0.588</td>
<td>0.6</td>
<td>0.612</td>
<td>V</td>
</tr>
<tr>
<td>FB Input Bias Current V<sub>FB</sub> = 0.6V</td>
<td></td>
<td>-50</td>
<td>-10</td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>SW On Resistance</td>
<td></td>
<td>80</td>
<td>150</td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td>SW Current Limit V<sub>IN</sub> = 5V, Duty cycle=50%</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>SW Leakage V<sub>SW</sub> = 20V</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>Thermal Shutdown</td>
<td></td>
<td>155</td>
<td></td>
<td></td>
<td>℃</td>
</tr>
</tbody>
</table>

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: \(T_J\) is calculated from the ambient temperature \(T_A\) and power dissipation \(P_D\) according to the following formula: \(T_J = T_A + (P_D) \times (250^\circ C/W)\).

Note 3: 100% production test at 25°C. Specifications over the temperature range are guaranteed by design and characterization.
TYPICAL PERFORMANCE CHARACTERISTICS

Efficiency vs. Load Current

For $V_{OUT} = 5V$:
- $VIN = 3V$
- $VIN = 3.7V$
- $VIN = 4.2V$

For $V_{OUT} = 18V$:
- $VIN = 5V$
- $VIN = 12V$
- $VIN = 16V$

Line/Load Regulation

For $V_{OUT} = 5V$:
- $VIN = 3V$
- $VIN = 3.7V$
- $VIN = 4.2V$

For $V_{OUT} = 18V$:
- $VIN = 5V$
- $VIN = 12V$
- $VIN = 16V$

Operation Frequency vs. Input Voltage

For $V_{OUT} = 5V$:
- Frequency vs. Input Voltage

For $V_{OUT} = 18V$:
- Frequency vs. Input Voltage
FUNCTIONAL DESCRIPTION

The MT3608 uses a fixed frequency, peak current mode boost regulator architecture to regulate voltage at the feedback pin. The operation of the MT3608 can be understood by referring to the block diagram of Figure 2. At the start of each oscillator cycle the MOSFET is turned on through the control circuitry. To prevent sub-harmonic oscillations at duty cycles greater than 50 percent, a stabilizing ramp is added to the output of the current sense amplifier and the result is fed into the negative input of the PWM comparator. When this voltage equals the output voltage of the error amplifier the power MOSFET is turned off. The voltage at the output of the error amplifier is an amplified version of the difference between the 0.6V bandgap reference voltage and the feedback voltage. In this way the peak current level keeps the output in regulation. If the feedback voltage starts to drop, the output of the error amplifier increases. These results in more current to flow through the power MOSFET, thus increasing the power delivered to the output. The MT3608 has internal soft start to limit the amount of input current at startup and to also limit the amount of overshoot on the output.
APPLICATIONS INFORMATION

Setting the Output Voltage
The internal reference V_{REF} is 0.6V (Typical). The output voltage is divided by a resistor divider, R_1 and R_2 to the FB pin. The output voltage is given by

$$V_{OUT} = V_{REF} \times \left(1 + \frac{R_1}{R_2}\right)$$

Inductor Selection
The recommended values of inductor are 4.7 to 22µH. Small size and better efficiency are the major concerns for portable device, such as MT3608 used for mobile phone. The inductor should have low core loss at 1.2MHz and low DCR for better efficiency. To avoid inductor saturation current rating should be considered.

Capacitor Selection
Input and output ceramic capacitors of 22µF are recommended for MT3608 applications. For better voltage filtering, ceramic capacitors with low ESR are recommended. X5R and X7R types are suitable because of their wider voltage and temperature ranges.

Diode Selection
Schottky diode is a good choice for MT3608 because of its low forward voltage drop and fast reverse recovery. Using Schottky diode can get better efficiency. The high speed rectification is also a good characteristic of Schottky diode for high switching frequency. Current rating of the diode must meet the root mean square of the peak current and output average current multiplication as following

$$I_D\text{ (RMS)} \approx \sqrt{I_{OUT} \times I_{PEAK}}$$

The diode’s reverse breakdown voltage should be larger than the output voltage.

Layout Consideration
For best performance of the MT3608, the following guidelines must be strictly followed.

- Input and Output capacitors should be placed close to the IC and connected to ground plane to reduce noise coupling.
- The GND should be connected to a strong ground plane for heat sinking and noise protection.
- Keep the main current traces as possible as short and wide.
- SW node of DC-DC converter is with high frequency voltage swing. It should be kept at a small area.
- Place the feedback components as close as possible to the IC and keep away from the noisy devices.

Figure 3. MT3608 Suggested Layout

Red Trace should be as short as possible
AEROSEMI
MT3608 2A, High Efficiency, 1.2MHz Step-Up Converter

PACKAGE DESCRIPTION

SOT23-6

NOTE:
1. DIMENSIONS ARE IN MILLIMETERS.
2. DRAWING NOT TO SCALE.
3. DIMENSIONS ARE INCLUSIVE OF PLATING.
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR.
IMPORTANT NOTICE
Xi’an Aerosemi Technology Co., Ltd reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services. Xi’an Aerosemi Technology Co., Ltd is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Xi’an Aerosemi Technology Co., Ltd does not assume any responsibility for use of any its products for any particular purpose, nor does Xi’an Aerosemi Technology Co., Ltd assume any liability arising out of the application or use of any its products or circuits.

Copyright © 2011, Xi’an Aerosemi Technology Co., Ltd
Tel: 0755-82879616 021-50871055 029-88868021
Http://www.aerosemi.com
E-Mail: sales@aerosemi.com